Functorial Renormalization: A Categorical Framework for Scale Transformations

Peter De Ceuster

October 14, 2025

Abstract

We propose a categorical formulation of renormalization in which scale changes are encoded as functors between categories (or topoi) that represent physical models at distinct resolution scales. Renormalization is presented as a coherent family of functors $R_{s\to t}$ between scale-categories \mathcal{C}_s and \mathcal{C}_t (for ultraviolet s towards infrared t), equipped with natural transformations encoding coarse-graining maps and the algebra of observables' projection. Under mild completeness hypotheses we conjecture the existence of universal fixed objects — categorical RG fixed points — characterized by limit/colimit universality. Diagrammatic examples illustrate the finite-lattice \to continuum passage. Consequences for photonic RG flow and connections to recent photonics/G-Theory studies are indicated and testable toy-model checks are suggested. This work aims to bridge categorical methods and renormalization practice, with particular eye toward photonic theories and De Ceuster's G-Theory diagnostics.

Keywords: Renormalization, Category theory, Functors, Fixed points, Photonic RG, Topos, Coarse-graining.

1 Introduction

Renormalization is traditionally presented as a procedure removing short-distance divergences while producing effective theories at longer distances. The Wilsonian perspective highlights flows on a (typically infinite-dimensional) space of couplings. We recast this by regarding each "scale" as a category (or topos) of models/fields/observables, and renormalization as functors between those categories. This functorial viewpoint clarifies universality and fixed-point structure in purely categorical terms and provides a language compatible with categorical coherence techniques used in photonic and Maxwell-extended theories [Ceu25a, Ceu25d].

2 Categorical Preliminaries

We assume the academic is familiar with basic category theory (categories, functors, natural transformations, limits, colimits, adjoints). We recall a few notions and fix notation.

Definition 2.1 (Scale poset). Let (Σ, \leq) be a directed partially ordered set of scales (e.g., physical momentum cutoffs, lattice spacings). We will write $s \succ t$ when s is a finer/UV scale than t.

Definition 2.2 (Scale diagram / scale-indexed category). A scale diagram is a functor

$$S:\Sigma\longrightarrow\mathbf{Cat}$$

assigning to each scale $s \in \Sigma$ a category C_s (the category of models / field configurations / algebras at scale s) and to each order relation $s \ge t$ a functor (coarse-graining / projection) $\rho_{s \to t} : C_s \to C_t$, subject to $\rho_{t \to u} \circ \rho_{s \to t} = \rho_{s \to u}$ whenever $s \ge t \ge u$.

Remark 2.3. We may insist that each C_s be a topos (or at least complete/cocomplete) when we want logical structure or internal languages available.

3 Functorial RG Setup

Definition 3.1 (Functorial renormalization). Given a scale diagram $S: \Sigma \to \mathbf{Cat}$, a functorial renormalization is the data of the functors $\{R_{s\to t} = \rho_{s\to t} : \mathcal{C}_s \to \mathcal{C}_t\}_{s\geq t}$ together with coherence natural isomorphisms

$$\alpha_{s,t,u}: R_{t\to u} \circ R_{s\to t} \stackrel{\cong}{\Longrightarrow} R_{s\to u}$$

satisfying the obvious pentagon coherence over quadruples $s \ge t \ge u \ge v$. If the α are identities we call the system *strictly functorial*.

Thus renormalization is not a single functor but a directed system of functors compatible with composition. Observables and coupling data are encoded as objects or internal algebraic structures in C_8 .

Definition 3.2 (RG cone and projective limit). The *projective limit* (if it exists) of the diagram $\{C_s, R_{s \to t}\}$ is a category $\varprojlim_{s \in \Sigma} C_s$ equipped with projection functors $\pi_s : \varprojlim_s C_{\bullet} \to C_s$ making universal cones.

Definition 3.3 (Fixed object / categorical RG fixed point). Let X be an object in $\varprojlim \mathcal{C}_{\bullet}$. We call X a categorical RG fixed object if for each $s \geq t$ the canonical projection $\pi_t(X)$ is (naturally isomorphic to) the image of $\pi_s(X)$ under $R_{s\to t}$. Equivalently, X is a universal cone stable under the renormalization functors.

4 A Conjecture: Existence of Universal Fixed Objects

We propose a categorical analogue of RG fixed points.

Conjecture 4.1 (Functorial RG Fixed-Point Conjecture). Let $S : \Sigma \to \mathbf{Cat}$ be a directed scale diagram such that:

- (i) Each C_s is complete and well-powered and has all small limits and colimits required by the models of interest.
- (ii) For each $s \geq t$, the coarse-graining functor $R_{s \to t} : \mathcal{C}_s \to \mathcal{C}_t$ admits a left or right adjoint (depending on whether the theory is presented dually), and these adjoints are compatible with composition up to coherent isomorphism.
- (iii) The directed system satisfies a mild compactness condition (e.g., there exists a cofinal subsystem indexed by a countable directed set or finite-type restriction).

Then the projective limit category $\varprojlim_{s \in \Sigma} C_s$ exists and contains one or more universal fixed objects. These fixed objects are characterized by a universal property expressed as a (co)limit in the diagram and correspond to RG fixed points in the traditional sense (scale-invariant structures in the limit category).

Remark 4.2. Condition (ii) is motivated by the common presence of coarse-graining maps which are left/right adjoints to embedding or refinement functors (block-spin averaging vs. refinement). Condition (iii) ensures useful existence results for limits in **Cat** under pragmatic model-building hypotheses.

5 Categorical Lemmas and a Simple Proof Sketch

We collect two elementary lemmas that underpin the conjecture.

Lemma 5.1. If Σ is a directed poset and each C_s is complete and the functors $R_{s\to t}$ preserve the relevant limits, then the limit $\varprojlim_s C_s$ exists in \mathbf{Cat} .

Sketch of proof. Construct the candidate limit as the category of compatible cones: objects are families $(X_s)_{s\in\Sigma}$ with isomorphisms $\phi_{s\to t}: R_{s\to t}(X_s)\cong X_t$ satisfying cocycle conditions; morphisms are compatible families of morphisms. Completeness and preservation of limits give that this construction yields the required universal property. (Standard enriched-limit construction in **Cat**.)

Lemma 5.2. If each $R_{s\to t}$ has a left adjoint $L_{t\to s}$ and the L commute with directed colimits in a specified sense, then colimit-type fixed objects (IR attractors) exist as colimits of coherent families of UV objects.

Sketch. Adjoints transport colimit existence upward/downward the diagram. A directed system of objects X_s with maps $X_s \to R_{s \to t} X_s$ produces a cocone whose colimit is a candidate for a fixed object. Coherence provides universality.

Combining Lemmas 5.1 and 5.2 gives the core existence mechanism behind Conjecture 4.1 under our hypotheses.

6 Examples and Diagrammatic Illustrations

6.1 Finite lattice \rightarrow continuum

Let $\Sigma = \{a_n\}_{n \in \mathbb{N}}$ be lattice spacings $a_n \downarrow 0$. For each a_n let \mathcal{C}_{a_n} be the category of lattice field configurations (or local algebras) at spacing a_n . The coarse-graining $R_{a_n \to a_m}$ for n < m is blockspin averaging. In many standard constructions $R_{a_n \to a_m}$ composes strictly, and the continuum category $\varprojlim \mathcal{C}_{a_n}$ is the category of compatible families of lattice configurations; continuum fields arise as limits. Fixed objects correspond to scale-invariant distributions (critical theories).

6.2 Commutative diagram example

A schematic of coherence for three scales $s \succ t \succ u$:

$$C_s \xrightarrow{R_{s \to t}} C_t \xrightarrow{R_{t \to u}} C_u$$

with a commuting 2-cell $\alpha_{s,t,u}: R_{t\to u} \circ R_{s\to t} \Rightarrow R_{s\to u}$ making the triangle coherently commute. A fixed object is a cone (X_s, X_t, X_u, \ldots) with $R_{s\to t}(X_s) \cong X_t$ and so forth.

7 Invariants under Functorial RG

Natural invariants in this setting include:

- Isomorphism classes of objects in the limit category.
- Categorical entropy-like measures (e.g., growth rates of endomorphism algebras along the diagram).
- Coherent sheaf cohomology classes when the C_s carry geometric/topos-theoretic structure.

These invariants can be functorially tracked across scales using the projections π_s and can be used to detect universality classes.

8 Implications for Photonic Theories and G-Theory

Applying the functorial RG perspective to photonic models clarifies how photonic degrees of freedom that are "hidden" at one scale can appear as structural features at another. Recent photonic-focused work argues for diagnostics and model structures that naturally fit a scale-category description [Ceu25a, Ceu25c]. G-Theory's extended Maxwell perspective suggests additional internal symmetries and dualities that are elegantly expressed as natural transformations between renormalization functors at different scales; such structure suggests that certain topological photon signatures behave as categorical fixed objects or invariants under the functorial RG flow [Ceu25d].

Remark 8.1. One practical upshot: photonic effective actions sensitive to Higgs-portal operators or kinetic-mixing terms can be modelled as objects in C_s with natural maps to IR objects; persistent features across scales (categorical fixed objects) predict robust photonic signatures even when standard local couplings appear irrelevant in perturbative RG [Ceu25b].

9 Toy Models and Numeric Checks

We propose several toy-model tests that teams can run numerically or algebraically:

- 1. Finite spin-chain averaging. Implement C_N as vector spaces of configurations on an N-site chain, with $R_{N\to M}$ block-averaging (M < N). Numerically compute cones of compatible states and check convergence to an object in the projective limit as $N \to \infty$.
- 2. Algebraic RG for quadratic photonic Hamiltonians. Encode quadratic Hamiltonians in categories of symplectic vector spaces with morphisms given by canonical transformations. Coarse-graining functors are partial traces; check fixed-point algebras.
- 3. Graphical calculus / ZX toy model. Use categorical ZX-style diagrams [Ceu25c] to compute invariants preserved by renormalization functors; verify that some diagrammatic invariants become stable under repeated coarse-graining.

These toy models are small enough that the limit constructions from Section 3 can be implemented and the universal property checked concretely.

10 Discussion and Outlook

The functorial renormalization perspective recasts RG fixed points as categorical limits/colimits: universal objects in the limit category of a scale diagram. This yields several conceptual clarifications:

- Universality as a categorical universality property (limits/colimits) rather than purely an analytic asymptotic statement.
- A clean language for dualities and emergent degrees of freedom via natural transformations between renormalization functors.
- Direct applicability to photonic/G-Theory frameworks where topological and algebraic structures are central; the Zenodo works collected here illustrate concrete photonic diagnostics and algebraic frameworks to test these ideas [Ceu25a, Ceu25d, Ceu25c].

Future directions include:

- Precise existence theorems under weaker completeness hypotheses (e.g., ∞-categorical formulations).
- 2. Investigation of stability and basin-of-attraction notions categorically (categorical analogues of linearization around fixed points).
- 3. Concrete photonic-model computations guided by the categorical invariants suggested above and by the analytic/numeric approaches in [Ceu25b].

References

- [Ceu25a] Peter De Ceuster. After the higgs: Missed opportunities in gauge vacuum diagnostics and the photonic sector. Zenodo, 2025. Published August 13, 2025.
- [Ceu25b] Peter De Ceuster. Beyond the standard model: Analytic approach for the detection related to unobserved laws of nature. Zenodo, 2025. Published August 12, 2025.
- [Ceu25c] Peter De Ceuster. Bose's photonic mathematics revisited: Entropic optimization, polylogarithmic asymptotics, and categorical coherence from symmetric functions to zx-calculus. Zenodo, 2025. Zenodo record.
- [Ceu25d] Peter De Ceuster. G-theory \rightarrow maxwell duality: Lie-n compactification, a nonsingular bounce, and topological photon signatures. Zenodo, 2025. Zenodo record.